Таблица электрических параметров кабелей

Таблица мощности кабеля.

Таблица мощности кабеля требуется чтобы правильно произвести расчет сечения кабеля, если мощность оборудования большая, а сечение кабеля маленькое, то будет происходить его нагревание, что приведет к разрушению изоляции и потере его свойств.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Для передачи и распределения электрического тока основным средством являются кабели, они обеспечивают нормальную работу всего, что связано с электрическим током и насколько качественной будет эта работа, зависит от правильного выбора сечения кабеля по мощности. Удобная таблица поможет сделать необходимый подбор:

Сечение токо-
проводящих
жил. мм

Медные жилы проводов и кабелей

Напряжение 220В

Напряжение 380В

Ток. А

Мощность. кВТ

Ток. А

Мощность кВТ

Сечение

Tоко-
проводящих
жил. мм

Алюминиевых жилы проводов и кабелей

Напряжение 220В

Напряжение 380В

Ток. А

Мощность. кВТ

Ток. А

Мощность кВТ

Но чтобы пользоваться таблицей, необходимо рассчитать общую потребляемую мощность приборов и оборудования, которые используются в доме, квартире или другом месте, куда будет проведен кабель.

Пример расчета мощности.

Допустим, выполняется в доме монтаж закрытой электропроводки кабелем ВВ. На лист бумаги необходимо переписать список используемого оборудования.

Но как теперь узнать мощность? Найти ее можно на самом оборудовании, где обычно есть бирка с записанными основными характеристиками.

Измеряется мощность в Ваттах (Вт, W) либо Киловаттах (кВт, KW). Теперь нужно записать данные, а затем их сложить.

Полученное число составляет, например, 20 000 Вт, это будет 20 кВт. Эта цифра показывает, сколько все электроприемники вместе потребляют энергии. Далее следует обдумать, какое количество приборов в течении длительного периода времени будет использоваться одновременно. Допустим получилось 80 %, в таком случае, коэффициент одновременности будет равен 0,8. Производим по мощности расчет сечения кабеля:

20 х 0,8 = 16 (кВт)

Для выбора сечения понадобится таблица мощности кабеля:

Сечение токо-
проводящих
жил. мм

Медные жилы проводов и кабелей

Источник

Выбор мощности, тока и сечения проводов и кабелей

Выбор сечения кабелей и проводов является обязательным и очень важным пунктом при монтаже и проектировании схемы любой электрической установки.
Для правильного выбора сечения силового провода необходимо учитывать величину максимально потребляемого нагрузкой тока.

В общем виде порядок выбора сечения силовой линии питания можно определить следующим образом:

При монтаже капитальных строений для прокладки внутренних силовых сетей допускается использование только кабелей с медными жилами (ПУЭ п. 7.1.34).

Питание электроприемников от сети 380/220 В должно выполняться с системой заземления TN-S или TN-C-S (ПУЭ п. 7.1.13), поэтому все кабели питающие однофазные потребители должны содержать три проводника:
— фазный проводник
— нулевой рабочий проводник
— защитный (заземляющий проводник)

Кабели, питающие трехфазные потребители должны содержать пять проводников:
— фазные проводники (три штуки)
— нулевой рабочий проводник
— защитный (заземляющий проводник)

Исключением являются кабели, питающие трехфазные потребители без вывода для нулевого рабочего проводника (например асинхронный двигатель с к. з. ротором). В таких кабелях нулевой рабочий проводник может отсутствовать.

Из всего многообразия кабельной продукции, представленной на современном рынке, жестким требованиям электро и пожаробезопасности соответствуют только два типа кабелей: ВВГ и NYM.

Внутренние силовые сети должны быть выполнены кабелем не распространяющим горение, то есть с индексом «НГ» (СП–110–2003 п. 14.5). Кроме того, электропроводки в полостях над подвесными потолками и в пустотах перегородок, должны быть с пониженным дымовыделением, на что указывает индекс «LS».

Общая мощность нагрузки групповой линии определяется как сумма мощностей всех потребителей данной группы. То есть для расчета мощности групповой линии освещения или групповой розеточной линии необходимо просто сложить все мощности потребителей данной группы.

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220.

1. Для определения сечения вводного силового кабеля необходимо подсчитать суммарную мощность всех планируемых к использованию энергопотребителей и умножить ее на коэффициент 1,5. Еще лучше – на 2, чтобы создать запас прочности.

2. Как известно, проходящий через проводник электрический ток (а он тем больше, чем больше мощность питаемого электроприбора) вызывает нагрев этого проводника. Допустимый для наиболее распространенных изолированных проводов и кабелей нагрев составляет 55-75°С. Исходя из этого и выбирается сечение жил вводного кабеля. Если подсчитанная общая мощность будущей нагрузки не превышает 10 — 15 кВт, достаточно использовать медный кабель с сечением жилы 6 мм 2 , алюминиевый – 10 мм 2 . При увеличении мощности нагрузки вдвое сечение увеличивается втрое.

3. Приведенные цифры справедливы для однофазной открытой прокладки силового кабеля. Если он прокладывается скрыто, сечение увеличивается в полтора раза. При трехфазной проводке мощность потребителей может быть увеличена вдвое, если прокладка открытая, и в 1,5 раза при скрытой прокладке.

4. Для электропроводки розеточных и осветительных групп традиционно используют провода, имеющие сечение 2,5 мм 2 (розетки) и 1,5 мм 2 (освещение). Поскольку многие кухонные приборы, электроинструменты и отопительные приборы являются очень мощными потребителями электроэнергии, их положено запитывать отдельными линиями. Здесь руководствуются следующими цифрами: провод, обладающий сечением 1,5 мм 2 , способен «потянуть» нагрузку в 3 кВт, сечением 2,5 мм 2 – 4,5 кВт, для 4 мм 2 допустимая мощность нагрузки уже 6 кВт, а для 6 мм 2 – 8 кВт.

Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение провода:

для медного провода 10 ампер на миллиметр квадратный,

для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8.

Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 мм 2 из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.

Допустимый длительный ток для проводов и шнуров
с резиновой и ПХВ изоляцией с медными жилами

Допустимый длительный ток для проводов с резиновой
и ПХВ изоляцией с алюминиевыми жилами

Допустимый длительный ток для проводов с медными жилами
с резиновой изоляцией в металлических защитных оболочках и кабелей
с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией
в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица
сечений проводов, тока, мощности и характеристик нагрузки

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту

Читайте также:  Как тянут кабель для телевизора

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях

Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

— Медь, U = 220 B, одна фаза, двухжильный кабель

Сечение токопроводящей жилы, мм 2 Макс. допустимая длина кабеля при указанном сечении, м*

— Медь, U = 380 B, три фазы, трехжильный кабель

Сечение токопроводящей жилы, мм 2 Макс. допустимая длина кабеля при указанном сечении, м*

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока
автоматического выключателя и сечения кабеля

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках

Сечение жил, мм 2

Шнуры для присоединения бытовых электроприемников

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

непосредственно по основаниям, на роликах, клицах и тросах

на лотках, в коробах (кроме глухих):

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

Незащищенные изолированные провода в наружных электропроводках:

по стенам, конструкциям или опорам на изоляторах;

вводы от воздушной линии

под навесами на роликах

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

Сечения проводников и защитные меры электробезопасности в электроустановках до 1000В


Щелкните мышкой по изображению чтобы увеличить.

Таблица выбора сечения кабеля для оповещателей СОУЭ

Скачать таблицу с формулами расчета — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

Выбор сечения жилы кабельной линии СОУЭ для рупорных громкоговорителей

Выбор сечения кабеля для речевого оповещения

Применение огнестойких кабелей в системах АПЗ

Благодаря своим частотным характеристикам огнестойкте кабели марок КПСЭнг-FRLS КПСЭнг-FRHF КПСЭСнг-FRLS КПСЭСнг-FRHF могут быть использованы в качестве:

  • шлейфов для адресно-аналоговых систем пожарной сигнализации;
  • кабелей приёма-передачи данных между приборами контрольными пожарными пожарной сигнализации и приборами управления системы противопожарной защиты;
  • интерфейсного кабеля систем оповещения и управления эвакуацией (СОУЭ);
  • кабеля управления систем автоматического пожаротушения;
  • кабеля управления систем противодымной защиты;
  • интерфейсного кабеля других систем противопожарной защиты.

В качестве справочной информации ниже приведены значения волновых сопротивлений и частотные характеристики различных марко-размеров огнестойких кабелей.

Таблица 1

№ п.п. Марка кабеля Волновое сопротивление, Ом
31,0 кГц 1000 кГц
1 КПСЭнг – FRLS 1х2х0.5
КПСЭнг – FRHF 1х2х0.5
120±20 100±15
2 КПСЭнг – FRLS 1х2х0.75
КПСЭнг – FRHF 1х2х0.75
110±15 90±10
3 КПСЭнг – FRLS 1х2х1.0
КПСЭнг – FRHF 1х2х1.0
100±15 80±10
4 КПСЭнг – FRLS 1х2х1.5
КПСЭнг – FRHF 1х2х1.5
90±10 70±10
5 КПСЭнг – FRLS 1х2х2.5
КПСЭнг – FRHF 1х2х2.5
80±10 60±5
Таблица 2
Марка кабеля Коэффициент затухания, дБ/100м
1 кГц 31 кГц 1 МГц 10 МГц 100 МГц
КПСЭнг – FRLS 1х2х0.5
КПСЭнг – FRHF 1х2х0.5
0,12 0,39 2,3 5,8 21,4
КПСЭнг – FRLS 1х2х0.75
КПСЭнг – FRHF 1х2х0.75
0,09 0,28 2,2 5,1 18,9
КПСЭнг – FRLS 1х2х1.0
КПСЭнг – FRHF 1х2х1.0
0,08 0,24 2,1 4,9 18,0
КПСЭнг – FRLS 1х2х1.5
КПСЭнг – FRHF 1х2х1.5
0,07 0,22 2,0 4,4 17,5
КПСЭнг – FRLS 1х2х2.5
КПСЭнг – FRHF 1х2х2.5
0,05 0,20 2,0 4,4 17,5

Общая сравнительная характеристика кабелей для локальной сети

Тип кабеля
(10 Мбит/с = около
1 Мб в сек)
Скорость передачи данных (мегабит в секунду) Макс официальная длина сегмента, м Макс неофициальная длина сегмента, м* Возможность восстановления при повреждении / наращивание длины Подверженность помехам Стоимость
Витая пара
Неэкранированная Витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Средняя Низкая
Экранированная витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Низкая Средняя
Кабель полевой П-296 100/10 Мбит/с —— 300(500)/>500 м Хорошая Низкая Высокая
Четырехжильный телефонный кабель 50/10 Мбит/с —— Не более 30 м Хорошая Высокая Очень низкая
Коаксиальный кабель
Тонкий коаксиальный кабель 10 Мбит/с 185 м 250(300) м Плохая Требуется пайка Высокая Низкая
Толстый коаксиальный кабель 10 Мбит/с 500 м 600(700) Плохая Требуется пайка Высокая Средняя
Оптоволокно
Одномодовое
оптоволокно
100-1000 Мбит До 100 км —- Требуется спец
оборудование
Отсутствует
Многомодовое
оптоволокно
1-2 Гбит До 550 м —- Требуется спец
оборудование
Отсутствует

*- Передача данных на расстояния, превышающие стандарты, возможна при использовании качественных комплектующих.

Выбор кабелей для систем видеонаблюдения

Чаще всего видеосигналы передаются между устройствами по коаксиальному кабелю. Коаксиальный кабель – это не только самый распространенный, но и самый дешевый, самый надежный, самый удобный и самый простой способ передачи электронных изображений в системах телевизионного наблюдения (СТН).

Коаксиальный кабель выпускается многими изготовителями с самыми разнообразными размерами, формами, цветами, характеристиками и параметрами. Чаще всего рекомендуют использовать кабели типа RG59/U, однако фактически это семейство включает кабели с самыми разнообразными электрическими характеристиками. В системах телевизионного наблюдения и в других областях, где применяются телекамеры и видеоустройства, также широко используются похожие на RG59/U кабели RG6/U и RG11/U.

Хотя все эти группы кабелей во многом похожи друг на друга, у каждого кабеля есть свои собственные физические и электрические характеристики, которые необходимо принимать во внимание.

Все три упомянутые группы кабелей относятся к одному и тому же общему семейству коаксиальных кабелей. Буквы RG означают «radio guide» (радиочастотный волновод), а числа обозначают различные виды кабеля. Хотя у каждого кабеля есть свой номер, свои характеристики и размеры, в принципе все эти кабели устроены и работают одинаково.

Устройство коаксиального кабеля

Наиболее распространенные кабели RG59/U, RG6/U и RG11/U имеют круглое сечение. В любом кабеле есть центральная жила, покрытая диэлектрическим изоляционным материалом, который, в свою очередь, покрыт токопроводящей оплеткой или экраном с целью защиты от электромагнитных помех (ЭМП). Наружное защитное покрытие поверх оплетки (экрана) называется оболочкой кабеля.

Два проводника коаксиального кабеля разделены непроводящим диэлектрическим материалом. Внешний проводник (оплетка) экранирует центральный проводник (жилу) от внешних электромагнитных помех. Защитное покрытие поверх оплетки предохраняет проводники от физических повреждений.

Центральная жила

Центральная жила – главное средство передачи видеосигнала. Диаметр центральной жилы обычно находится в пределах от 14 до 22 калибра по американскому сортименту проводов (AWG). Центральная жила либо медная целиком, либо стальная с медным покрытием (сталь, плакированная медью), в последнем случае жилу также называют неизолированным омедненным проводом (BCW, Bare Copper Weld). Центральная жила кабеля для систем СТН должна быть медной. Кабели, центральная жила которых не полностью медная, а только покрыта медью, имеют намного большее сопротивление контура на частотах видеосигнала, поэтому их нельзяприменять в системах СТН. Чтобы определить тип кабеля, посмотрите на сечение его центральной жилы. Если жила является стальной с медным покрытием, то ее центральная часть будет серебристого цвета, а не медного. От диаметра центральной жилы зависит активное сопротивление кабеля, то есть его сопротивление постоянному току. Чем больше диаметр центральной жилы, тем меньше ее сопротивление. Кабель с центральной жилой большого диаметра (а значит с меньшим сопротивлением) может передавать видеосигнал на большее расстояние с меньшими искажениями, но зато более дорог и менее гибок.

Читайте также:  Желтый кабель за что отвечает

Если условия эксплуатации кабеля таковы, что он может часто изгибаться в вертикальном или горизонтальном направлении, выберите кабель с многожильным центральным проводником, который сделан из большого количества проводов малого диаметра. Многожильный кабель более гибкий по сравнению с одножильным и более стойкий с точки зрения усталости метала при изгибе.

Диэлектрический изоляционный материал

Центральная жила равномерно окружена диэлектрическим изоляционным материалом, обычно это полиуретан или полиэтилен. Толщина слоя этого диэлектрического изолятора одинакова по всей длине коаксиального кабеля, благодаря чему эксплуатационные характеристики кабеля по всей его длине одинаковы. Диэлектрики из пористого или вспененного полиуретана меньше ослабляют видеосигнал, чем диэлектрики из твердого полиэтилена. При расчете потерь по длине для любого кабеля желательны меньшие потери по длине. Кроме того, вспененный диэлектрик придает кабелю большую гибкость, которая облегчает работу монтажников. Но хотя электрические характеристики кабеля с вспененным диэлектрическим материалом более высоки, такой материал может поглощать влагу, которая ухудшает эти характеристики.

Твердый полиэтилен жестче и лучше сохраняет свою форму, чем вспененный полимер, более устойчив к защемлению и сдавливанию, но прокладывать такой жесткий кабель несколько труднее. Кроме того, потери сигнала на единицу длины у него больше, чем у кабеля с вспененным диэлектриком, и это нужно учитывать, если длина кабеля должна быть большой.

Оплетка, или экран

Снаружи диэлектрический материал покрыт медной оплеткой (экраном), которая является вторым (обычно заземленным) проводником сигналов между телекамерой и монитором. Оплетка служит экраном от нежелательных внешних сигналов, или наводок, которые обычно называют электромагнитными помехами (ЭМП) и которые могут неблагоприятно влиять на видеосигнал.

Качество экранирования от электромагнитных помех зависит от содержания меди в оплетке. Коаксиальные кабели рыночного качества содержат неплотную медную оплетку с экранирующим эффектом приблизительно 80%. Такие кабели пригодны для обычных случаев применения, когда электромагнитные помехи малы. Эти кабели хороши в тех случаях, когда они проложены в металлическом кабелепроводе или металлической трубе, которые служат дополнительным экраном.

Если условия эксплуатации не очень хорошо известны и кабель прокладывается не в металлической трубе, которая может служить дополнительной защитой от ЭМП, то лучше выбрать кабель с максимальной защитой от помех или кабель с плотной оплеткой, содержащей больше меди по сравнению с коаксиальными кабелями рыночного качества. Повышение содержания меди обеспечивает лучшее экранирование за счет большего содержания экранирующего материала в более плотной оплетке. Для систем СТН требуются медные проводники.

Кабели, в которых экраном служит алюминиевая фольга или оберточный фольговый материал, не пригодны для систем телевизионного наблюдения (СТН). Такие кабели обычно применяются для передачи радиочастотных сигналов в передающих системах и в системах распределения сигнала с коллективной антенны.

Кабели, в которых экран сделан из алюминия или фольги, могут искажать видеосигналы настолько сильно, что качество изображения упадет ниже уровня, требуемого в системах наблюдения, особенно в том случае, когда длина кабеля велика, поэтому такие кабели не рекомендуется применять в системах СТН.

Внешняя оболочка

Последним компонентом коаксиального кабеля является внешняя оболочка. Для ее изготовления используются различные материалы, но чаще всего поливинилхлорид (ПВХ). Поставляются кабели с оболочкой различных цветов (черные, белые, желтовато-коричневые, серые) – как для наружной установки, так и для установки в помещениях.

Выбор кабеля определяется также следующими двумя факторами: расположение кабеля (внутри помещения или снаружи) и его максимальная длина.

Коаксиальный видеокабель предназначен для передачи сигнала с минимальной потерей от источника с волновым сопротивлением 75 Ом к нагрузке с волновым сопротивлением 75 Ом. Если используется кабель с другим волновым сопротивлением (не 75 Ом), то возникают дополнительные потери и отражения сигналов. Характеристики кабеля определяются рядом факторов (материал центральной жилы, диэлектрический материал, конструкция оплетки и др.), которые следует тщательно учитывать при выборе кабеля для конкретного применения. Кроме того, характеристики передачи сигнала по кабелю зависят от физических условий вокруг кабеля и от метода прокладки кабеля.

Используйте только кабель высокого качества, выбирайте его, внимательно учитывая среду, в которой он будет работать (в помещении или снаружи). Для передачи видеосигналов лучше всего подходит кабель с медной однопроводной жилой, за исключением случая, когда требуется повышенная гибкость кабеля. Если условия эксплуатация таковы, что кабель часто изгибается (например, если кабель подсоединен к сканирующему устройству или камере, которая поворачивается по горизонтали и по вертикали), требуется специальный кабель. Центральный проводник в таком кабеле многожильный (скручен из тонких жил). Проводники кабеля должны быть сделаны из чистой меди. Не применяйте кабель, проводники которого сделаны из стали, плакированной медью, потому что такой кабель плохо передает сигнал на тех частотах, которые используется в системах СТН.

В качестве диэлектрика между центральной жилой и оплеткой лучше всего подходит вспененный полиэтилен. Электрические характеристики вспененного полиэтилена лучше, чем у сплошного (твердого) полиэтилена, но он больше подвержен отрицательному воздействию влаги. Поэтому в условиях повышенной влажности предпочтительнее твердый полиэтилен.

В типовой системе СТН применяются кабели длиной не более 200м, желательно кабели RG59/U. Если внешний диаметр кабеля около 0,25 дюйм. (6,35 мм), то он поставляется в катушках по 500 и 1000 фут. Если нужен более короткий кабель, используйте кабель RG59/U с центральной жилой калибра 22, активное сопротивление которого составляет около 16 Ом на 300 м. Если нужен более длинный кабель, то подойдет кабель с центральной жилой калибра 20, сопротивление которого по постоянному току равно приблизительно 10 Ом на 300м. В любом случае можно легко приобрести кабель, в котором диэлектрическим материалом является полиуретан или полиэтилен. Если требуется кабель длиной от 200 до 1500 фут. (457 м), лучше всего подойдет кабель RG6/U. При тех же электрических характеристиках, что у кабеля RG59/U, его наружный диаметр также примерно равен диаметру кабеля RG59/U. Кабель RG6/U поставляется в катушках длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут.(609 м) и изготавливается из различных диэлектрических материалов и различных материалов для внешней оболочки. Но диаметр центральной жилы кабеля RG6/U больше (калибр 18), поэтому его сопротивление постоянному току меньше, оно равно приблизительно 8 Ом на 1000 фут. (304 м), а это означает, что сигнал по этому кабелю можно передавать на большие расстояния, чем по кабелю RG59/U.

Параметры кабеля RG11/U выше параметров кабеля RG6/U. В то же время электрические характеристики этого кабеля в основном такие же, как у других кабелей. Можно заказать кабель с центральной жилой калибра 14 или 18 с сопротивлением постоянному току 3-8 Ом на 300м). Поскольку этот кабель из всех трех кабелей имеет наибольший диаметр (0,405 дюйм. (10,3 мм)), то работы по его прокладке выполнять труднее. Кабель RG11/U обычно поставляется в катушках по длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут. (609 м). Для применения в особых условиях производители часто изготавливают модификации кабелей RG59/U, RG6/U и RG11/U.

В результате изменений правил пожарной безопасности и техники безопасности в различных странах все большую популярность в качестве материала для диэлектрика и оболочки приобретает фторопласт (тефлон, или Teflon®) и другие огнестойкие материалы. В отличие от ПВХ эти материалы не выделяют ядовитых веществ при пожаре и поэтому считаются более безопасными.

Читайте также:  Списаны реализованные товары с мол проводка

Для прокладки под землей рекомендуется специальный кабель, укладываемый непосредственно в грунт. Внешняя оболочка такого кабеля содержит влагостойкие и другие защитные материалы, поэтому его можно укладывать прямо в траншею. О способх подземной прогладки кабелей читайте здесьПрокладка кабеля в земле.

При большом разнообразии видеокабелей для камер можно легко подобрать наиболее подходящий для конкретных условий. После того как определитесь с тем, какой должна быть ваша система, ознакомьтесь с техническими характеристиками оборудования и выполните соответствующие расчеты.

Сигнал ослабляется в каждом коаксиальном кабеле, и это ослабление тем больше, чем кабель длиннее и тоньше. Кроме того, ослабление сигнала увеличивается с ростом частоты передаваемого сигнала. Это одна из типичных проблем охранных систем телевизионного наблюдения (СТН) в целом.

Например, если монитор находится на расстоянии 300м от телекамеры, то сигнал ослабляется примерно на 37%. Самое плохое в этом то, что потери могут быть неочевидными. Поскольку вы не видите потерянную информацию, то можете даже не догадываться о том, что такая информация вообще была. Во многих видеоохранных системах СТН есть кабели длиной по несколько сотен и тысяч метров, и если потери сигналов в них велики, то изображения на мониторах будут серьезно искажены. Если расстояние между камерой и монитором превышает 200м, необходимо предпринять особые меры для обеспечения хорошей передачи видеосигнала.

Оконечная нагрузка кабеля

В системах телевизионного охранного наблюдения сигнал передается от камеры к монитору. Обычно передача идет по коаксиальному кабелю. Правильная оконечная нагрузка кабеля существенно влияет на качество изображения.

Используя номограмму (Рис. 1) можно определить значение напряжения подаваемого на видеокамеру (только для кабелей с медной жилой) задавшись сечением кабеля, максимальным током и удалением от источника питания.
Полученное значение напряжения нужно сравнить с минимально допустимым значением напряжения, при котором камера может стабильно работать.
Если значение меньше допустимого, то необходимо увеличить сечение используемых кабелей или использовать другую схему электропитания.
Номограмма рассчитана на источник электропитания видеокамер постоянным током с напряжением 12В.

Рис 1. Номограмма для определения напряжения на камере.

Волновое сопротивление (импеданс) коаксиального кабеля находится в диапазоне от 72 до 75 Ом, необходимо, чтобы сигнал передавался по однородной линии в любой точке системы для предотвращения искажения изображения и обеспечения надлежащей передачи сигнала от телекамеры к монитору. Импеданс кабеля должен быть постоянным и равным 75 Ом на всей его длине. Чтобы видеосигнал передавался от одного устройства к другому правильно и с малыми потерями, выходной импеданс телекамеры должен быть равен импедансу (волновому сопротивлению) кабеля, который, в свою очередь, должен быть равен входному импедансу монитора. Оконечная нагрузка любого видеокабеля должна быть равна 75 Ом. Обычно кабель подсоединен к монитору и одно это уже обеспечивает соблюдение указанного выше требования.

Обычно импеданс видеовхода монитора регулируется переключателем, расположенным около сквозных разъемов (вход/ выход), предназначенных для подсоединения дополнительного кабеля к другому устройству. Этот переключатель позволяет включить нагрузку величиной 75 Ом, если монитор является конечной точкой передачи сигнала, или включить высокоомную нагрузку (Hi-Z) и передать сигнал на второй монитор. Ознакомьтесь с техническими характеристиками оборудования и инструкциями к нему, чтобы определить требуемую оконечную нагрузку. Если оконечная нагрузка будет выбрана неверно, изображение обычно бывает слишком контрастным и слегка зернистым. Иногда изображение двоится, бывают и другие искажения.

Характеристика радиочастотных кабелей типа РК — RG

Марка
кабеля
Внутр. диаметр Диам.
изоляции,
мм
Внешний проводник Оболочка Вес,
кг/км
Затуха-
ние,
ДБ/м
Рекомендуемая
длина до
видеокамеры,
не более, м
Рекомендуемый
разъём для подключения
видеокамеры
мате-
риал
n*d, мм d, мм мате-
риал

d, мм/% мате-
риал
d, мм
РК-75-1,5-11 М 1*0,24 0,24

1,5 ПЭ ОМ 0,08/60% ПЭ 2,4 8,4 0,32 50 BNC RG-58 пайка
РК-75-2-11 М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/92% ПЭ 3,3 16 0,22 300 BNC RG-58 пайка
РК-75-2-11а М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/75% ПЭ 3,3 14 0,23 200 BNC RG-58 пайка
РК-75-2-13 ЛМ 7*0,12 0,36 2,2 ПЭ ОМЛ 0,1/92% ПЭ 3,3 14,7 0,2 350 BNC RG-58 пайка
РК-75-3-32 М 1*0,6 0,6 2,7 ВПЭ ОМ 0,1/90% ПВХ 4,6 28,4 0,12 450 BNC RG-58, RG-59
РК-75-3,7-322а М 1*0,6 0,8 3,7 ВПЭ АЛ+ОМЛ 0,1/лм65% ПВХ 6 37,3 0,085 600 BNC RG-59
РК-75-4-11 М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,08 600 BNC RG-6 пайка
РК-75-4-11а М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/75% ПЭ 6,2±0,3 40 0,13 600 BNC RG-6 пайка
РК-75-4-12 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,09 600 BNC RG-6 пайка
РК-75-4-15 М 1*0,72 0,72/td> 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,08 600 BNC RG-6 пайка
РК-75-4-16 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,09 600 BNC RG-6 пайка
РК-75-4,9-322а М 1*1,1 1,1 4,9 ПЭ АЛ+ОМЛ 0,15/лм65% ПВХ 7,15 51 0,06 750 BNC RG-6
РК-75-9-12 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПВХ 12,2±0,8 189 0,06 Магистральный
РК-75-9-13 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПЭ 12,2±0,8 169 0,06 Магистральный
RG-59 М 1*0,81 0,81 3,66 ВПЭ АЛ+ОМЛ 0,15/67% ПВХ, ПЭ 6 31 0,085 600 BNC RG-59
RG-6U
RG-6WE
СОЖ
М
1*1,02
1*1,02
1,02
1,02
4,4 ВПЭ
4,7 ВПЭ
АЛ+ОМЛ
АЛ+ОМЛ
0,15/32%
0,15/64%
ПВХ, ПЭ
ПВХ, ПЭ
7
6,9
36
45
0,09
0,06
650 BNC RG-6 обжим
BNC RG-6
RG-11 СОЖ 1*1,63 1,63 7,11 ВПЭ АЛ+ОМЛ /60% ПВХ, ПЭ 10,3 166 0,05 Магистральный

Кабели представляют собой коаксиальный кабель с волновым сопротивлением 75 ом и диаметром 2,2 — 4,4 мм и несколько проводов питания сечением 0,35 — 0,75 мм2, объединённые общей оболочкой из поливинилхлоридного пластиката (для внутренней установки), светостабилизированного полиэтилена (для внешней установки) или термопластичной безгалогенной композиции (КВК-П-2 нг(С)-HF 2х0.50).

Для систем видеонаблюдения промышленностью выпускаются несколько типов комбинированных кабелей, специально предназначенных для передачи видеосигнала с одновременным подключением питания видеокамер или сигналов управления, а также микрофонных устройств (ККСЭВ, ККСЭВГ, ККСЭПГ).

Электрическое сопротивление постоянному току при 20°С, не более Ом/км:
— для сечения 0.35 мм 2 — 55.5;
— для сечения 0.50 мм 2 — 40.5;
— для сечения 0.75 мм 2 — 25.5.

Вид климатического исполнения (по ГОСТУ 15150-69):
— УХЛ, категория размещения 1, 2 для кабелей с оболочкой из СПЭ;
— УХЛ, категория размещения 2.1, 3, 4 для кабелей с оболочкой из ПВХ.

Окружающая среда для кабеля:
— с ПВХ оболочкой — от минус 40°С до плюс 70°С;
— с СПЭ оболочкой — от минус 40°С до плюс 80°С.

Срок службы кабелей:
— с ПВХ оболочкой — 12 лет,
— с П/Э оболочкой — 15 лет.

Более подробную информацию по выбору кабеля для СВН читайте здесь (Выбор видеокабеля для СВН),
а также здесь (Коаксиальный кабель в системах видеонаблюдения).

Источник

Adblock
detector