Сколько волокон может быть у одномодового кабеля

Сколько волокон может иметь оптоволоконный кабель?

Сколько волокон может иметь оптоволоконный кабель?

Оптические кабели применяются в Российской Федерации, в соответствии с «Правилами применения оптических кабелей связи, пассивных оптических устройств и устройств для сварки оптических волокон», утвержденных Приказом Министерства информационных технологий и связи Российской Федерации от «19» апреля 2006 г. № 47.

Типы кабелей по количеству волокон

На наших заводах производится выпуск продукции следующих видов:

Оптический кабель 2 волокна – в основном применяется как распределительный оптический кабель для внутренней прокладки. Внешняя оболочка выполнена из полимера не распространяющего горение с низким дымо- и газовыделением.

Оптический кабель 4 волокна – часто используется в локальных компьютерных оптических сетях, для прокладки внутри серверных и ЦОДов для соединения стоек и шкафов. Имеет негорючую оболочку.

Оптический кабель 8 волокон в основном используется для прокладки внутри помещений и серверных ЦОДов. Обладает изоляцией с пониженной горючестью.

Оптический кабель 12 волокон – применяется для создания локальных компьютерных сетей. В зависимости от типа изоляции, может использоваться для соединения рабочих мест и ЦОДов расположенных как в одном здании, так и разнесенных на расстояние.

Оптический кабель 16 волокон – в основном используется внутри серверных комнат для соединения стоек серверов. При соответствующей изоляции может применяться для организации сетей вне зданий.

Оптический кабель 24 волокна – используется для стационарной прокладки магистральных кабельных подсистем, а также для создания локальных сетей внутри помещений. Поддерживает передачу данных на короткие и средние расстояния.

Оптический кабель 32 волокна — предназначен для прокладки магистралей внутри зданий, в помещениях общего назначения, а так же применяется в горизонтальных подсистемах.

Оптический кабель 48 волокон – используется для организации магисталей передачи данных. В зависимости от типа оболочки может использоваться как внутри зданий, так и в канализационных каналах.

Оптический кабель 64 волокна – благодаря различным типам изоляции возмозно его применение в разных видах среды: в кабельной канализации, в подвесном или самонесущем варианте.

Оптический кабель 72 волокна — изготавливаемый по ТУ 3587-001-92193892-2011, может использоваться для расширения единой сети электросвязи России для подвеса на опорах линий связи, между зданиями и сооружениями.

Оптический кабель 96 волокон – используется для организации магисталей и пригоден для прокладки в грунтах, при пересечении рек и водных преград, в кабельной канализации, по мостам и эстакадам, а также в туннелях, коллекторах, зданиях.

Оптический кабель 144 волокна – применяется внутри и вне помещений. Используется для магистралей средней длины (mid-span) и распределения оптических сигналов (split out) в сетях центров обработки данных, компьютерных сетях и сетях FTTx в рамках технологии «оптика до абонента».

Особенности выпуска ОК

При выборе ОК, проектировщикам нужно учитывать, что большая часть производителей сейчас выпускает кабели с количеством волокон кратным 6 или 12. Не существует общих стандартов, определяющих, сколько волокон должно быть в кабеле, поэтому в каждом отдельном случае, покупателю приходится решать этот вопрос самостоятельно.

Обычно количество волокон определяется количеством принимающих и передающих узлов активного оборудования, а также схемой сети. Для простого приема и передачи сигналов на линиях связи может даже использоваться оптоволоконный кабель на 2 волокна. Большее количество волокон в кабеле позволит добиться передачи более больших объемов информации без ущерба пропускной способности. Подбирая правильный ОК, нужно также учитывать и определенный запас волокон для последующего развития сети. Специалисты вообще советуют умножать количество необходимых волокон на два – к примеру, имея необходимость в 32 волокна, лучше брать оптический кабель на 64 волокна.

Наиболее удобный вариант — это купить оптический кабель непосредственно у производителя, т.к. в таком случае можно заказать кабель с практически любым количеством волокон, при этом кабель на 96 волокон не будет стоить вдвое дороже, чем на 48 волокон – его стоимость увеличится примерно на 30 – 40%. Самое оптимальное соотношение цены и качества оптоволоконного кабеля предлагает компания «Интегра-Кабель», реализующая ОК собственного производства с 2002 года.

Читайте также:  Кабель nym скрытая проводка

Источник

Число волокон в оптическом кабеле

Количество волокон в оптическом кабеле зависит от проектных значений конкретной ВОЛС. Строгой номенклатуры и стандартов по данным критериям нет. При построении сети, выборе оптического кабеля учитывается комплекс параметров: характеристики активного и пассивного оборудования, количество подключаемых абонентов, объемы передаваемых данных, пропускная способность.

Число линий передачи света в оптических кабелях (ОК) кратно 6 и 12, их количество определяют эксплуатационные и технические характеристики ВОЛС:

  • Количество световодов зависит от числа узлов активного оборудования и схемы построения (топологии) абонентской сети (прием и передача информации могут выполняться как по одному маршруту, так и по двум разным). Для вещания выбирается один световод, рассчитанный на передачу данных в одном направлении;
  • Надо учитывать целевое назначение (видеонаблюдение, Интернет, телерадиовещание, связь), протоколы работы активного оборудования, протяженность линии;
  • Экономически целесообразно использовать для магистральных линий одномодовый одноволоконный кабель, обеспечивающий низкое затухание сигнала. Для абонентской и распределительной сети выгодней применять комбинированные многомодовые проводники, а для подключения абонентов кабеля витая пара;
  • Важно предусмотреть резервный запас свободных световодов, необходимый для модернизации, расширения, подключения новых пользователей. В среднем для магистральных линий берется запас в 50 процентов, для распределительной – 20 процентов;
  • Предусмотреть дальнейшее развитие, реконструкцию трассы во всех деталях сложно, поэтому специалисты рекомендуют предусматривать запас в два раза. Доказано на практике, что в процессе эксплуатации такой подход экономически полностью оправдывается.

При разработке проекта, выборе топологии построения трассы, отдельных участков линии, важно учитывать планируемое расширение, необходимые эксплуатационные характеристики, протоколы работы активного оборудования, пропускную способность, скорость передачи данных.

Проектные параметры рассчитываются на основании соответствующих формул, таблиц затухания силы сигнала, параметров отражения, поглощения шума, коэффициента дисперсии, других физических приемо-передающих характеристик ОК.

Типы кабелей по количеству волокон

Стандартные ОК в номенклатуре предназначены для устройства сети различной степени сложности, функционала:

  • двухволоконный – распределительный проводник для внутреннего монтажа, подключения, объединения групп абонентов;
  • 4 волокна – для локальной компьютерной сети серверных, подключения распределительных шкафов, стоек;
  • 8 волокон – проводник для построения внутренней инфраструктуры дата центров;
  • 12 волокон – кабель для монтажа локальной компьютерной сети, объединяющей группы пользователей, находящихся в одном или разных зданиях, подключения локальной сети к серверной, дата центру;
  • 16 волокон – соединительный оптический кабель для стоек серверов, может использоваться для наружной прокладки, если предусмотрена соответствующая защитная изоляция;
  • 24 волокна – для линий короткой и средней протяженности, построения внутренней локальной топологии, кабельной подсистемы;
  • 32 волокна – для магистральных ВОЛС вертикальных и горизонтальных внутри зданий, сооружений;
  • 48 волокон – проводник для магистральных линий связи, прокладываемой в помещениях, канализации, коллекторах;
  • 64 волокна – в зависимости от конструкции несущего элемента, параметров брони, защитной оболочки, может использоваться для прокладки магистральной трассы методом подвеса по опорам, в коллекторах, канализации;
  • 72 волокна – адаптирован к единой сети электросвязи РФ, может применяться для подключения, расширения наружных магистралей связи, прокладываемых по опорам, методом подвеса;
  • 96 волокон – для внешних магистральных линий, прокладываемых в грунте, под водой, в тоннелях, по мостам, эстакадам или внутри зданий;
  • 144 волокна — ОК для внутреннего и наружного монтажа магистральных трасс средней протяженности, распределительных узлов ЦОД, компьютерных сетей, трасс FTTx, подключаемых по абонентской технологии.

Как видим для простой линии связи достаточно кабеля с двумя световодами, но чем больше количество световых трасс передачи, тем больше пропускная способность линии. Поэтому, выбирая число волокон оптического кабеля, нужно ориентироваться на проектные и эксплуатационные, технические, монтажные параметры конкретной линии связи.

В ассортименте завода производителя «Москабель-Фуджикура» профессиональный выбор оптических кабелей с различным числом волокон, вариантом изоляции, брони, рассчитанных на любые параметры прокладки, построения трасс ВОЛС.

Источник

Одномодовый и многомодовый волоконно-оптический кабель: отличия и правила выбора

Волоконно-оптические системы связи ведут свою историю с 1960 года, когда был изобретен первый лазер. При этом само оптическое волокно появилось только 10 лет спустя, и сегодня именно оно является физической основой современного интернета.

Читайте также:  Как утепляют канализационные трубы кабелем

Оптические волокна, применяемые для передачи данных, имеют принципиально схожее строение. Светопередающая часть волокна (ядро, сердечник или сердцевина) находится в центре, вокруг него располагается демпфер (который иногда называют оболочкой). Задача демпфера – создать границу раздела сред и не дать излучению покинуть пределы ядра.

И ядро, и демпфер изготавливаются из кварцевого стекла, при этом показатель преломления ядра несколько выше, чем показатель преломления демпфера, чтобы реализовать явление полного внутреннего отражения. Для этого достаточно разницы в сотые доли – например, ядро может иметь показатель преломления n1=1.468, а демпфер – значение n2=1.453.

Диаметр ядра одномодовых волокон составляет 9 мкм, многомодовых – 50 или 62.5 мкм, при этом диаметр демпфера у всех волокон одинаков и составляет 125 мкм. Строение световодов в масштабе показано на иллюстрации:

Ступенчатый профиль показателя преломления (stepindex fiber)– самый простой для изготовления световодов. Он приемлем для одномодовых волокон, где условно считается, что «мода» (маршрут распространения света в ядре) одна. Однако для многомодовых волокон со ступенчатым показателем преломления характерна высокая дисперсия, вызванная наличием большого количества мод, что приводит к рассеиванию, «расползанию» сигнала, и в итоге ограничивает расстояние, на котором возможна работа приложений. Минимизировать дисперсию мод позволяет градиентный показатель преломления. Для многомодовых систем настоятельно рекомендуется использовать именно волокна с градиентным показателем преломления (gradedindex fiber), в которых переход от ядра к демпферу не имеет «ступеньки», а происходит постепенно.

Основной параметр, характеризующий дисперсию и, соответственно, способность волокна поддерживать работу приложений на определенные расстояния – коэффициент широкополосности. В настоящее время многомодовые волокна делятся по этому показателю на четыре класса, от OM1 (которые не рекомендуется применять в новых системах) до наиболее производительного класса OM4.

Класс волокна

Размер ядра/демпфера, мкм

Коэффициент широкополосности,
режим OFL, МГц·км

Примечание

850 нм

1300 нм

OM1

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

OM2

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

OM3

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 300 м.

OM4

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Одномодовые волокна делятся на классы OS1 (обычные световоды, используемые для передачи на длинах волн либо 1310 нм, либо 1550 нм) и OS2, которые можно применять для широкополосной передачи во всем диапазоне от 1310 нм до 1550 нм, поделенном на каналы передачи, или в даже более широком спектре, например, от 1280 до 1625 нм. На начальном этапе выпуска волокна OS2 маркировались обозначением LWP (Low Water Peak), чтобы подчеркнуть, что в них минимизированы пики поглощения между окнами прозрачности. Широкополосная передача в наиболее производительных одномодовых волокнах обеспечивает скорости передачи свыше 10 Гбит/с.

Одномодовый и многомодовый волоконно-оптический кабель: правила выбора

Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:

для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния

для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна

для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4

для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3

для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4

для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3

для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2

Читайте также:  Чем кабель должен быть защищен от механических повреждений

Стоимость оптического световода во многом определяется диаметром ядра, поэтому многомодовый кабель при прочих равных обходится дороже одномодового. При этом активное оборудование для одномодовых систем из-за использования в них мощных лазерных источников (например, лазер Фабри-Перо) стоит существенно дороже активки для многомода, где используются либо относительно недорогие лазеры поверхностного излучения VCSEL либо еще более дешевые светодиодные источники. При оценке стоимости системы необходимо учитывать затраты как на кабельную инфраструктуру, так и на активное оборудование, причем последние могут оказаться существенно больше.

На сегодняшний день сложилась практика выбора оптического кабеля в зависимости от сферы использования. Одномодовое волокно используется:

в морских и трансокеанских кабельных линиях связи;

в наземных магистральных линиях дальней связи;

в провайдерских линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;

в системах кабельного телевидения (в первую очередь OS2, широкополосная передача);

в системах GPON с доведением волокна до оптического модема, размещаемого у конечного пользователя;

в СКС в магистралях длиной более 550 м (как правило, между зданиями);

в СКС, обслуживающих центры обработки данных, независимо от расстояния.

Многомодовое волокно в основном используется:

в СКС в магистралях внутри здания (где, как правило, расстояния укладываются в 300 м) и в магистралях между зданиями, если расстояние не превышает 300-550 м;

в горизонтальных сегментах СКС и в системах FTTD (fibertothedesk), где пользователям устанавливаются рабочие станции с многомодовыми оптическими сетевыми картами;

в центрах обработки данных в дополнение к одномодовому волокну;

во всех случаях, где расстояние позволяет применять многомодовые кабели. Хотя сами кабели обходятся дороже, экономия на активном оборудовании покрывает эти затраты.

Можно ожидать, что в ближайшие годы волокно OS2 постепенно вытеснит OS1 (его снимают с производства), а в многомодовых системах исчезнут волокна 62.5/125 мкм, поскольку их полностью вытеснят световоды 50 мкм, вероятно, классов OM3-OM4.

Тестирование одномодовых и многомодовых оптических кабелей

После монтажа все установленные оптические сегменты подлежат тестированию. Только измерения, проведенные специальным оборудованием, позволяют гарантировать характеристики установленных линий и каналов. Для сертификации СКС применяются приборы с квалифицированными источниками излучения на одном конце линии и измерителями на другом. Такое оборудование производят компании Fluke Networks, VIAVI, Psiber; все подобные устройства имеют предустановленные базы допустимых оптических потерь в соответствии с телекоммуникационными стандартами TIA/EIA, ISO/IEC и другими. Более протяженные оптические линии проверяют с помощью оптических рефлектометров, имеющих соответствующий динамический диапазон и разрешающую способность.

На этапе эксплуатации все установленные оптические сегменты требуют бережного обращения и регулярного использования специальных чистящих салфеток, палочек и других средств очистки.

Нередки случаи, когда проложенные кабели повреждают, например, при копке траншей или при выполнении ремонтных работ внутри зданий. В этом случае для поиска места сбоя необходим рефлектометр или другой диагностический прибор, основанный на принципах рефлектометрии и показывающий расстояние до точки сбоя (подобные модели есть у производителей Fluke Networks, EXFO, VIAVI, NOYES (FOD), Greenlee Communication и других).

Встречающиеся на рынке бюджетные модели предназначены в основном для локализации повреждений (плохих сварок, обрывов, макроизгибов и т д). Зачастую они не в состоянии провести детальную диагностику оптической линии, выявить все её неоднородности и профессионально создать отчет. Кроме этого, они менее надежны и долговечны.

Качественное оборудование – напротив надежно, способно диагностировать ВОЛС в мельчайших деталях, составить корректную таблицу событий, сгенерировать редактируемый отчет. Последнее крайне важно для паспортизации оптических линий, потому как иногда встречаются сварные соединения с настолько низкими потерями, что рефлектометр не в состоянии определить такое соединение. Но сварка ведь всё равно есть, и ее необходимо отобразить в отчёте. В этом случае программное обеспечение позволяет принудительно установить на рефлектограмме событие и в ручном режиме измерить потери на нем.

Многие профессиональные приборы также имеют возможность расширения функциональных возможностей за счет добавления опций: видеомикроскопа для инспектирования торцов волокон, источника лазерного излучения и измерителя мощности, оптического телефона и др.

Источник

Adblock
detector